
280 

Acta Cryst. (1975). A31, 280 
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The concepts embodied in the coincidence-site-lattice theory of grain boundaries are shown to be 
compatible with a large number of tensor quantities which have their origin in the continuum field 
theory of dislocations. More specifically such tensor quantities as distortion, grain-boundary dislocation 
density, and incompatibility have all been developed in terms of a general grain boundary for a con- 
tinuum as well as for the discrete crystal. A generalized Burgers circuit about an arbitrary grain boundary 
is also shown to be a natural outcome of the present development. 

Introduction 

It was first shown that the plastic deformation of a 
grain boundary could be described in terms of a suitable 
combination of crystal lattice dislocations (CLD) from 
the two adjacent grains (Marcinkowski, 1970; 1972; 
Marcinkowski & Tseng, 1970; Das & Marcinkowski, 
1971a; 1972; Sadananda & Marcinkowski, 1974a, b). 
Further development of this concept showed that the 
structure of the undeformed grain boundary itself could 
be described in terms of the same general concept in- 
volving the appropriate combination of CLD from 
the two adjacent grains (Marcinkowski & Das, 1972; 
Marcinkowski, Sadananda & Tseng, 1973; Marcin- 
kowski & Sadananda, 1973; Marcinkowski & Dwara- 
kadasa, 1973; Sadananda & Marcinkowski, 1973, 
1974c). Not  only was it found possible to integrate the 
theory of CLD into the present model of grain bound- 
aries, but the theory of disclinations also followed quite 
logically (Das & Marcinkowski, 1971b; Marcin- 
kowski, Das & Sadananda, 1973; Marcinkowski & 
Das, 1972). It was further shown that the present 
theory of grain boundaries could also be extended to 
arbitrary crystal structures (Marcinkowski, Tseng & 
Dwarakadasa, 1974; Tseng, Marcinkowski & Dwara- 
kadasa, 1974). Because of these generalizations, the 
present theory of grain boundaries has been referred 
to as the unified theory. 

Some very powerful mathematical techniques, based 
upon tensor algebra, have been developed over the 
years, which have led to marked insight into the be- 
havior of dislocations (Kr~Sner, 1958) as well as dis- 
clinations (de Wit, 1970). The purpose of the present 
study has been to extend these mathematical methods 
to grain boundaries in order to form the basis of a still 
more generalized and unified theory of grain bounda- 
ries. 
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I" Presently on sabbatical leave at the Institut ffir Theore- 
tische und Angewandte Physik der Universit/it Stuttgart, 
Germany (BRD). 

Plas t i c  distortions which give rise to rigid rotat ions  

Fig. l(a) shows a block of material which may be 
visualized as a single crystal or grain. On may now 
define a plastic distortion D=D~j which is expressed 
by the following relation: 

D~j=Aui/Axj (1) 

where Au, is the relative displacement between two 
parallel planes originally separated by a distance Ax:. 
For small displacements, equation (1) is more usually 
written as ell (Nye, 1957), while Kr~Sner (1958) ex- 
presses his distortion as fl:~=D~j. Fig. l(c) may be 
visualized as being derived from Fig. l(a) by carrying 
out the specific distortion 

[DnD~2Dx3'~ ( i  
D~j=|D2,D22D231= 

\D31Da2Da3 ,I 
tan 0/2 i )  00 

which is equivalent to a simple shear. In the case 
where Dtj possesses a limiting value, i.e. 

lim - Aui dui - - -  (3) 
axj~o Axj dxj 

the distortion shown in Fig. l(b) obtains, and D~I may 
be written as 

Dr: = c~u~/3xj- 3jut = u~, j .  (4) 

The distortion shown in Fig. l(b) may be referred to as 
the type given in the continuum model, while that 
shown in Fig. l(c) may be thought of as that ex- 
pressed by the discrete model. Note that the distortions 
in Fig. 1 result in no net rotation of the crystal. 

It is next of interest to investigate the strain tensor 
E~j associated with a given finite distortion Dij. Ac- 
cording to Duschek & Hochrainer (1960) 

E~j= ½(Dij + Dj~ + Dk~Dkj ) (5) 

where Etj is referred to as the strain tensor in Lagran- 
gian coordinates, i.e. coordinates prior to deformation 
(Fung, 1965). The E associated with the distortion 
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given by equation (2) may then be readily expressed by 

(i  tan0,2i) EI, : /E: : , , / :  tan 0/2 ½ tan z 0/2 
\EaxE32Eaa/ 0 . (6) 

In general there is no simple physical interpretation 
associated with the components of the strain tensor 
resulting from large distortions. However, E u given 
by equation (5) can be used to determine the volume 
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Fig. 1. Simple shear of the single grain shown in (a) by (b) 
continuous (c) discrete slip motion. 
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Fig. 2. Generation of a symmetric tilt boundary from the single 
grain shown in (a) by (b) continuous (c) discrete slip motion. 

change A associated with the particular distortion. In 
particular, according to Duschek & Hochrainer (1960). 

A = ( V -  Vo)/Vo=[det (du+ 2Eu)] ' / z -  1, (7) 

where V0 and V are the volumes prior to and after 
plastic distortion respectively, while det signifies the 
determinant of the quantity in parentheses. The symbol 
d u refers to the Kronecker delta (Flfigge, 1972). For 
the particular case of equation (6), A from equation (7) 
is readily found to be zero as is physically anticipated 
from inspection of Fig. 1. As later discussions will 
indicate, the nature of the volume change associated 
with a given distortion is not always physically obvious. 

Fig. 2(a) again shows a block of material which may 
be viewed as a single crystal. This time however, the 
block can be subdivided into two distinct regions 
labeled as d~l and 7¢2 and separated by the vertical 
dashed line. One may now carry out the distortions 
D~j given by equation (2) and D~j=-D~j  within re- 
gions gz 1 and d~2 respectively. The resulting distortion 
is shown in Fig. 2(b) and (c), where the former is in 
terms of the continuum model, while the latter is in 
terms of the discrete representation. It is apparent that 
the combined distortions D~x and D~j have resulted in 
the counterclockwise and clockwise rotations of grains 

1 and 7¢2 respectively by 0/2 measured with respect 
to the original coordinate system designated by the 
superscript c. The net result has been the creation of a 
grain boundary between grains ~¢ 1 and ~¢2. 

In the case of twist boundaries or a completely 
enclosed symmetric tilt boundary, it is necessary to 
generalize the distortion given by equation (2) as fol- 
lows: ( 0tan 

Dlj= - t a n  0/2 0 
o o . (8)  

From equation (5), the strain tensor associated with 
the above distortion is found to be 

( ½tan20/2 0 i )  
E~j= 0 ½tan z0/2 

0 0 . (9) 

The above strain leads in turn to a volume change, 
which from equation (7), is found to be 

A=tan 2 0/2. (10) 

The nature of this volume change can be visualized by 
reference to Fig. 3(b) which arises from the application 
of the distortion given by equation (8) to the single 
grain shown in Fig. 3(a), which may be thought of as 
grain # 1. For visualization purposes, the model shown 
in Fig. 3(b) is best taken as discrete. Furthermore, 0 
is chosen as 53.1 °, which later sections will show cor- 
responds to a coincidence lattice orientation. For this 
particular value of 0, equation (10) leads to a volume 
change given by A=0.25. This volume change is 
represented by the shaded areas in Fig. 3(b), and each 
one of these areas may be associated with a pair of 
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dislocation dipoles, i.e. a row of vacancies lying along 
the x~ axis. Several of these dislocations are shown in 
the upper right-hand comer of the figure, and it is a 
simple matter to show that the sum of all the Burgers 
vectors associated with Fig. 3(b) is zero. Another way 
of looking at this figure is to visualize all of the dislo- 
cations as originating from loops, or plus-minus edge- 
type pairs, during the distortion given by equation (8). 
Distortions similar to that shown in Fig. 3(b) have also 
been postulated by Cottrell (1957) but in a somewhat 
different context. 

In order to eliminate the excess volume, i.e. excess 
vacancies in Fig. 3(b), and thus maintain a low-energy 
grain boundary, it is necessary to superimpose a volume 
distortion D~j v on Fig. 3(b) such that A = 0, as shown 
in this figure. The distortion can then be written as 

D b , _  h i , ±  nl ,v  (11) - -  u i J  T u I l  

where Di~ is given by equation (8) and D~) v is expressed 
by the following: 

0 . (12) 

As Dllr=Di~ V in the above equation, equation (5) 
can be used to obtain the corresponding strain tensor 

[Dh v + ~' tD"V'~Zll J 
E~jv=I  0 0 

o 
D a,v + i(Di,V~2 

II ~2k It ) 
0 . (13) 

The above relation can then be used to obtain the 
corresponding volume change through equation (7), 
i.e. 

d = (DhV) 2 + 2Dh r. (14) 

Since A given by the above equation must be equal to 
the negative of that given by relation (10), we obtain 

DhV= - 1 + ] / 1 - t a n  s 0/2 (15) 

where the positive root is used. The above analysis 
applied to grain ~1  in Fig. 3, could also be carried 
out for the surrounding matrix, i.e. grain ¢P2. Anal- 
ogous to the case described in Fig. 2, the combined 
distortions of grains ~ 1 and ~ 2  in Fig. 3 lead to their 
mutual rigid rotation by 0/2 with respect to the original 
c coordinate system. The rotation of one such grain, 
i.e. grain ¢Pl, by 0/2 is shown in Fig. 3(d). For con- 
venience, the distortions illustrated in Fig. 3(c) and 
(d) are based upon the continuum model, in contrast to 
those of Fig. 3(a) and 3(b). 

The distortions associated with Figs. 1, 2 and 3 have 
all been described in terms of glide motions. On the 
other hand, it is possible to generate the same net 
distortion by a climb process which involves atom dif- 
fusion. Such a process is shown in Fig. 4 where the 
block designated by ABCD is converted into that 
described by AEFD. In particular, the vertical planes 
describing the section ABE drawn dotted climb upward 
as shown by the arrow, while those planes contained in 

DCF occur as a result of downward climb. The final 
distortion is identical to that given in Fig. l(b). It 
thus follows that a history is associated with the for- 
mation of a grain boundary. On the other hand, the 
distortion associated with Fig. 4 is still formally the 
same as that given by equation (2). 

In concluding this section, it is to be emphasized 
that the plastic distortions described thus far refer 
only to the distortions within the individual grains. 
Although these distortions give the correct angular 
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Fig. 3. (b) Plastic distortion of the single grain shown in (a) 
by glide on two orthogonal slip systems. Discrete approxima- 
tion. (c) Hydrostatic compression of the grain shown in (b) 
followed by a counterclockwise rotation shown in (d). 
Continuum approximation. 
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rotations associated with the boundaries through the 
distortion components tan 0/2, they do not in them- 
selves properly describe the plastic distortion associated 
with a pure rigid-body rotation. This aspect of the 
problem will now be considered in more detail in the 
following section. 

G e n e r a l i z e d  f o r m u l a t i o n  o f  s y m m e t r i c  b o u n d a r i e s  

In general, a rigid-body rotation through an angle ~0 
can be described in terms of the generalized rotation 
tensor R u given by (Duschek & Hochrainer, 1960) 

Rij=ete j+(Ji j -e~ej )  COS ~-]- ,? , l jkek  sin q~ (16) 

where e, is a unit vector in the direction of the rotation 
axis. The quantity e~jk in equation (16) is the permuta- 
tion tensor (Fliigge, 1972). The rotation tensor given by 
equation (16) can then be used to relate the coordinates 
in the two corresponding systems according to (Nye, 
1957) 

xl = Ruxj  (17a) 
o r  

x i =  R j i x '  j (17b) 

where the primes refer to the coordinates in the rotated 
system, while the unprimed quantities refer to the 
coordinates in the original unrotated system. If equa- 
tions (17) are applied to Fig. 2, it follows that 

o r  

while 

o r  

xJ/ o l ,e~  (18a) 

x~ = ol,~.a (18b) 

x 2 = o2,~..c (19a) 
.v, t j .,~, j 

x~ = r,2,~. 2 ( 1 9 b )  ~t~,jl Ji, j , 

where from equation (16), in which the rotation axis 
is chosen to lie along z, 

while 

( cosO/2sin 0 / 2 ! )  
R~f=  - s i n  0/2 cos 0/2 

0 0 (20a) 

R 2 , C  _ r,l,c u - ~'Jt • (20b) 

Equations (18) also apply to Fig. 3. It is also apparent 
that the coordinates of grains #1 and # 2  in Fig. 2 

t 
B E C F 

"" i i,; 

A O 

Fig. 4. Distortion of the block ABCD into AEFD by climb 
processes. 

can also be related to one another through equations 
(18) and (19) to give 

o r  

where 

X l _ _  D I , c  D2,C-~2 __ D 1 , 2 y 2  (21a) 
l - -  l ~ l j  l l k J  "~k - -  l~ lk  "~k 

X 1 ~ D 1 , 2 ~ - 2  - " k ~  -~k (21b) ( os0sin0 ) 
Rlk 2 = - sin 0 cos 0 

0 0 . (22) 

Equations (21) and (22) will again be taken up in the 
discussion of asymmetric tilt boundaries. 

A displacement vector u~ can be associated with a 
rotation as follows (Duschek & Hochrainer): 

ut--- x~ - xl = (R~j - Ju)xj (23) 

where equation (17a) has been utilized in arriving at 
the above relations. A distortion tensor associated 
with a rigid-body rotation may now be defined as the 
term in parentheses in equation (23), i.e. 

D~ = R l j - -  t~ij . (24) 

With respect to Fig. 2(b), the distortion tensor D~j 
can be defined separately for grains #1 and # 2  in 
terms of the c coordinate system. In particular 

t1,¢_ ..a ..¢_ n l ,c . .  (25a) 
and 

~2,~_ ..2 ..~_ n2,c..~ (25b) 
1 - - ' ~ l - - ' ~ ' l - - X l l j  "~j 

where 
D~j~=R~)~-Ju (26a) 

and 
D,Z) ~= R~j~-Ju.  (26b) 

Alternatively, equations (25) and (26) can be com- 
bined to give the distortion relating to both grains 
# 1 and # 2  of Fig. 2(b). In particular 

zj,2,~_. 1,c .2,~_ nt,2,c..~ (27a) 
1 - -  ~ i  - -  ~1 - - x " i j  "~j 

where from equation (26) 
D1,2,~_ r,l,c r,2,~ 1,~ D~f . (27b) lj --*~'lj - - * ' U  = O i l  - 

With the aid of equations (20), (26) and (27) D~j c 
and D~j 2'c can be written out in full as 

while 

( c o s 0 / 2 - 1 s i n 0 / 2  i )  
D~f= - s i n  0/2 cos 0 /2-1  

0 0 

( 0 2 sin 0/2 i )  
D~j2'~= - 2  sin 0/2 0 

0 0 

(28a) 

(28b) 

where it is immediately apparent that D~j 2'c is anti- 
symmetric, i.e. D~j2'C=-D)i2'c. As expected for a 
rigid-body rotation, equation (28a), through the use of 
equations (5) and (7), leads to EL c and A both equal to 
zero. On the other hand, equations (5) and (7) are, 
strictly speaking, not applicable to D~j 2'c since the 



components of this particular tensor apply to a sur- 
face, i.e. the grain boundary separating grains # 1 and 
~ 2  from one another. 

Still more insight into the significance of equations 
(28a) and (28b) can be obtained by reference to Fig. 5 
which shows the displacements and distortions asso- 
ciated with a grain boundary possessing an orientation 
similar to that shown in Fig. 2(b). With the aid of 
equations (25), (26), (27) and (28), it is apparent from 
this figure that x ~ - O A ,  x ~ - O D ,  ~ - O B ,  CA-u~ 'c= 
Dl,~...c C B -  uZ~ ' c -  n2.~,.~ and uz I '~-  nl.~..~_ n2,~,.c 

1 2  - ' v 2 ,  m ~  ~ " L ' 1 2  " V 2  - -  J J 2 2  " V 2  - -  J J 2 2  " ~ 2  

@~=CD. Thus it can be seen from equation (27b) 
how the diagonal elements of D ~'z'c which are related l j  , 

to CD in Fig. 5, cancel. On the other hand, the non- 
diagonal element DI~ z'~ in equation (28b) is simply the 
ratio AB/OD, or since OD=OA,  AB/OA. It will be 
shown in a subsequent section that DIi z,~ is simply 
the dislocation density along a symmetric boundary 
in the xg direction, while D~'t z,~ is the dislocation 
density along the corresponding grain boundary in the 
xg direction. 

Special case of low-angle boundaries 

As 0 approaches zero, equations (26) and (28) reduce 
to the following: (00 ) 

D~) 2'c= --0 0 (29a) 
0 0  

and 

(29b) Db = - /2 0 
0 

Unlike the case for large angles, in which only D~) 2'c 
was antisymmetric, DIj c and D~) c are also antisym- 
metric for small 0. Furthermore, since 0 is small, the 
product term in equation (5) can be neglected, so that 

Eu=½(Du+ Dn)=½(9ju,+O,u:i ) (30) 

U21,C ~ D2 2I,c X C .D~C X c " U22,C where it is apparent that all E u associated with equa- 
tions (29) are zero. Since the distortion tensors given 
by equations (29) are antisymmetric, since for small 
strains 

A = E , , = 0  (31) 

it follows that they represent pure rotations. They can 
thus be written as (Nye, 1957) 

Du--  e)u= Xz(Oju~-Oluj) (32) 

or in vector form as (Kr/Sner, 1966) 

to = ½ curl u } (33a) 

or conversely as 
cou =eUkCOk. (33b) 

It is important to emphasize here that equations (32) 
and (33) hold in general only for small 0. Also in 

accordance with the discussion at the end of the pre- 
vious section, it is apparent that the components of 
the tensors in equations (29) represent the dislocation 
densities for low-angle tilt boundaries. 

Grain-boundary dislocation density 

Although we have already touched on the meaning of 
a grain-boundary dislocation density, it is instructive 
to approach this subject from a somewhat different 
point of view. In particular, the dislocation density 
within a grain boundary may be expressed by (KrSner, 
1958; Bilby, 1955) 

= n x D l ~ 2 - n x D [ ~ l  } 
- ~u = emnkDjzl # 2 -- emnkDj~ [ # 1 (34) 

where D is the plastic distortion tensor, n is a unit 
vector normal to the grain boundary directed from 
grain # 1 to grain #2 ,  while the indices i and j refer 
to the plane normal (or dislocation line direction in 
the present case) and Burgers vector component asso- 
ciated with ~t. The subscripts ~ 2  and #1  signify 
that the operations associated with those particular 
terms are defined with respect to grains # 2  and #1  
respectively. As an example, for the symmetric tilt 
boundary shown in Fig. 2, ~t is given by 

-aat=e312nlD~Cl#2-eal2nlDl(l#1 (35a) 

- ~31 = - sin 0/21 #2 - sin 0/21#1 (35b) 

aal = 2 sin 0/2. (35c) 

On the other hand 

-aa2=ea12nlD2~Cl#2-ea12nlD~Cl#l (36a) 

--~32=(COS 0/2--1)[#z-(cos 0/12- 1)~1 (36b) 

~32=0, (36c) 

D 

A B 
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o x~, 

Fig. 5. Schematic illustration of the distortion associated with 
a rigid-body rotation. 
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where it is apparent that the value of n~ in the above 
equations is unity, while the plastic distortions given 
by equations (26) and (28a) have been used. It is also 
apparent that the grain-boundary dislocation density 
components ~al and 0~a2, given by equations (35) and 
(36), are simply the components of the distortion 

rm2.~ given by Dll~ 2'c and Dli  2"c respectively. tensor ~.ij 
Yet another way of expressing ~ is in terms of the 

distortions D~j and D2j within the individual grains 
given by equation (2). In this case, equation (34) be- 
comes 

- 2 (37a) 
- -  °~31 = eai2ni D l2] # 2 - -  e312nx Dli2[ # 1 

- ~31=cos 0 /2 ( -  tan 0/2)1#2-cos 0/2(tan 0/2)1# 1 (37b) 

-~31 = 2 cos 0/2 tan 0/2 = 2 sin 0/2 (37c) 

which is seen to be identical to the results given by 
equations (35). It is important to note that in using 
equation (37) n has been chosen normal to the de- 
formed face of Fig. l(b). 

It can also be seen that as 0 ~ 0, equations (34), 
(32) and (33b) can be combined to give 

- 2 ,c  oq i = ((~ijnm('Om -- ns (02'c) # 2 -- ((~ijn,n(-Olm 'c 

- - n j o 9 ~ ' ~ ) [ # l .  (38) 

The individual terms in the above expression are related 
to the lattice curvatures (Kr~Sner, 1958). In com- 
parison with the case for large 0 given by equations 
(35), equation (38) gives 

~ai =-nicoal'2[#2+nff.O~'2=0/2+0/2=0 (39) 

as expected, and is thus in accord with the value of 
the Dll 2,c component of the distortion tensor given by 
equation (29a). 

Asymmetric tilt boundaries and grain-boundary 
incompatibility 

Fig. 6(a) shows the particular case of a grain boundary 
which has been formed by first subjecting grain 4~1 
in Fig. 2(a) to a plastic distortion given by Diz=tan  0, 
with all other components zero. Such a distortion 

i 
×, x~ 

(a) 

/ 
#1 

/ (h) 

Fig. 6. Generation of an asymmetric tilt boundary from the 
single grain shown in Fig. 2(a) by continuous slip motion (a), 
after rotation of grain # l(b), after dilatation of grain #2. 

induces a counterclockwise rotation of grain ~¢ 1 with 
respect to grain ~¢2 in the manner given by equation 
(22). The displacement vectors associated with this 
distortion are seen to be 

h l , 2  __ ~1  .v-2 _ _ / 3 1 , 2  .v.2 (40) 
where 

D1,2_ z~1,2 .~ (41) 
l j  m ~ " l j  ~ V l j  • 

From equation (34) the grain boundary dislocation 
density contributed from grain ¢Pl is given by ~3i = 
sin 0 and fi32=cos 0 - 1 .  On the other hand, since D 2 
associated with grain 4~2 is zero, there exists no 
contribution from it. However, in order for grains 
4~ 1 and 4~2 to retain their coherency across the grain 
boundary during the plastic deformation within grain 
#1 ,  severe elastic strains must be generated within 
grains ~ 1 and ~2.  This is shown by the curved upper 
and lower surfaces of grain 4~2 in Fig. 6(a). 

As a measure of the elastic distortions exhibited 
in Fig. 6(a), it is helpful to introduce the concept of 
an incompatibility tensor H defined as follows (KrO- 
ner, 1958): 

H = - V  x D x V (42a) 

or alternatively as 
H = ~ x V  } 
Hu =SljkVk~zj • (42b) 

The tensor H may be visualized as a measure of the 
internal elastic strain existing within a body. In the 
case of Fig. 6(a) H may be written as 

where 

(ooo o o ° ) H l i 2  = 

o o I Ih' (43) 

1,2  H33 = ~.312V20~31 + E 3 2 1 V l ~ 3 2  (44a) 

H ~ 2 = O - - O / ~ x [ c o s  O-- 1]~0 .  (44b) 

It is apparent from equation (44b) that the incom- 
patibility associated with the grain boundary in Fig. 
6(a) arises because of the component H]~ 2. This in- 
compatibility however can be removed by subjecting 
grain ¢P2 in Fig. 6(a) to the distortion 

D222 = (cos 0 - 1 ) .  (45) 

This enables ~32 and thus the component H31~ z to vanish. 
The effects of the distortion given by equation (45) 
are shown in Fig. 6(b) and can be visualized as being 
obtained by the insertion of crystal lattice dislocations 
of density ~32=cos 0 - 1  into grain ~ 2  of Fig. 6(a). 
The terms compensated and uncompensated grain 
boundaries have been employed to describe the configu- 
rations shown in Fig. 6(b) and 6(a) respectively (Mar- 
cinkowski & Sadananda, 1973). It is easy to see that 
the incompatibility H also vanishes for the case of the 
symmetric tilt boundary shown in Fig. 2. On the other 
hand, as 0 ~ 0, ~32 ~ 0 for the case shown in Fig. 
6, i.e. the asymmetric tilt boundary becomes symme- 
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tric, so that I-/ for this particular boundary also 
vanishes. 

Relationship between the continuum theory and 
the coincidence-site theory of  grain boundaries 

A more detailed atomistic picture of the symmetric 
tilt boundary discussed with respect to Fig. 2(b) is 
shown in Fig. 7. For simplicity, the crystal structure 
is taken to be simple cubic, 0 is 53.1 ° and the rotation 
axis is taken to be normal to the drawing, i.e. [001]. 
A characteristic feature of the grain boundary in Fig. 7 
is that it possesses a common lattice or trait cell. Two 
such unit cells, one in each grain, are shown in heavy 
outline and are seen to be coincident with the coor- 
dinate system labeled with the superscript c. One of 
the coincidence-site-lattice unit cells of Fig. 7 is shown 
in still greater detail in Fig. 8. 

The coincidence-site-lattice relationship has been 
defined in earlier studies by the following relationship 
(Marcinkowski & Das, 1972; Marcinkowski, Sada- 
nanda & Tseng, 1973): 

Nb N 
tan 0 / 2 -  Mb - M (46) 

where N has been visualized as the number of crystal 
lattice dislocations of strength b, shown in heavy out- 
line within the grain boundary of Fig. 7, which have 
moved to the grain boundary from either grain ~¢1 
or grain # 2  on every M successive slip planes. The 
quantities N and M may possess any integer value, and 
it is clear that the unit-cell demensions of the coin- 
cidence-site lattice a0~ are defined by this pair of inte- 
gers as follows 

ao~=ao(N ~ + Mz)  uz. (47) 

For the particular case where 8 =  53.1 ° shown in Fig. 
7, N =  1 and M = 2  as can be seen in Fig. 8. It is also 
clear from equations (2) and (8) of the previous dis- 
cussions that the coincidence-site-lattice relationship 
given by equation (46) is simply one of the components 
of the distortion tensor referred to one of the grains, 
i.e. D~2 or  DlZ2. 

In order that the dislocation content associated with 
an asymmetric grain boundary in a discrete crystal 
lattice be visualized, reference is made to Fig. 9. Speci- 
fically, as in the case of Fig. 7, the grain boundary in 
Fig. 9 possesses a tilt angle of 53.1°; however the boun- 
dary is rotated from its symmetric orientation by ~ = 
26.6 ° . The detailed dislocation structure comprising 
the straight asymmetric tilt boundary, unlike the con- 
tinuum model of Fig. 6(b), is readily discernible in 
Fig. 9. For example, two crystal-lattice dislocations 
are seen to occur at the grain boundary every five 
interatomic spacings along the xg direction of grain #2 .  
This corresponds to a3z = 2 = 0.40, which is in agreement 
with the value ~32=cos (53.1)-1 =0.40 obtained from 
equation (36). 

The asymmetric tilt boundary shown in Fig. 9 can 

also be visualized in terms of a stepped boundary such 
as illustrated in Fig. 10 (Marcinkowski & Sadananda, 
1973) where each stepped segment consists of a sym- 
metric tilt boundary. It is also apparent from com- 
parison of Figs. 9 and 10 that the dislocation content 
within each of the grain boundaries is markedly dif- 
ferent. The difference may be understood by visual- 
izing Fig. 9 as being formed by a rotation of grain # 1 
by O with respect to grain ~2 ,  i.e. by equations (40) and 
(41). The stepped asymmetric boundary in Fig. 10, 
on the other hand, may be viewed in terms of equal 
but opposite rotations of grains # 1 and ~ 2  by angles 
of 0/2, i.e. by equations (25) and (26). Unique coinci- 
dence-site lattices are also possessed by the asymmetric 
tilt boundaries of Figs. 9 and 10 and they have been 
discussed in detail elsewhere (Marcinkowski & Sadan- 
anda, 1973). 
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The Burgers circuit associated with a high-angle grain 
boundary 

It is intuitively obvious that a simple relationship must 
exist between the grain-boundary dislocation density 
given by equation (34) and the Burgers circuit associa- 
ted with a grain boundary, and was first shown by 
Bilby (1955). Following Kr6ner (1958), the total Bur- 
gers vector B associated with a given Burgers circuit 
may be written as follows: 

~ ~ , (48) 
B k = - - - f  DdLk=-IeukDuds, 

L s 

where the first integral is simply the line integral of the 
distortion, i.e. Burgers circuit, while the second integral 
is the surface integral taken within the area outlined 
by the Burgers circuit. The line and surface integrals of 
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Fig. 10. Stepped asymmetr ic  high-angle tilt bounda ry  with 0 =  
53.1 ° and ~o=26.6 ° in a simple-cubic lattice. 

equation (48) are clearly connected by Stokes's the- 
orem. From the relation (Kri$ner, 1958) 

it follows that 

P 
B = 1 ds .  (49) 

a = curl D (50) 

so that the surface integral in equation (48) is simply 
the total dislocation content within the Burgers loop. 
Since the dislocation content is concentrated along 
the plane of the grain boundary, whose normal is n 
within the Burgers loop, we may write (KriSner, 1958) 

a=a~(n) (51) 
where ~(n) is a delta function which is zero everywhere 
except at n = 0. Since equation (50) could also be writ- 
ten as 

- a = n  x (O2- Dj)J(n) (52) 

the derivation of equation (34) follows immediately. 
It is now possible to consider the Burgers circuits 

associated with the symmetric and asymmetric grain 
boundaries of Fig. 7 and 9 respectively. In particular, 
consider interatomic jumps of equal magnitude along 
equivalent directions in grains # 1 and ~ 2  starting and 
ending on a coincident-site atom A located in the bound- 
ary. Each atom jump in Figs. 7 and 9 is shown by an ar- 
row. The solid arrows designate equivalent jumps which 
are present in equal numbers along equivalent directions 
in grains #1  and #2 .  The dotted arrows represent 
the extra jumps, the sum of which is merely the closure 
failure of the circuit. In other words, the four dotted 
arrows associated with grains # 1 and # 2  in Fig. 7, 
represent the number of extra half planes measured 
along the xl directions of grains # 1 and #2.  Similarly, 
in the case of Fig. 9, the group of eight dotted arrows 
corresponds to the number of extra half planes measured 
along the xl direction of grain #1 ,  while the second 
group of four dotted arrows represents the number of 
extra half planes measured along the x2 direction of 
grain #2.  For the stepped asymmetric grain boundary 
shown in Fig. 10, a Burgers circuit identical to that 
shown in Fig. 9 may be constructed, where it will be 
noted that the closure failures are the same in the two 
cases. The four-step closure failure may be associated 
with the four dislocations enclosed by the circuit which 
possess Burgers vectors in equivalent [010] directions in 
both grains, while the eight-step closure failure may be 
associated with the remaining eight dislocations en- 
closed by the Burgers circuit which have Burgers vectors 
that lie along the equivalent [100] direction of the 
two adjacent grains. The dislocation density associated 
with the stepped boundary of Fig. 10 will of course be 
lower then that given by the straight boundary of 
Fig. 9, since the same number of dislocations are 
spaced over a longer length of boundary. Alternatively, 
this same result could have been arrived at by the use 
of equation (34). It will also be noted that whereas 



288 T H E O R I E S  OF G R A I N  B O U N D A R I E S  

only one coincident-site atom is associated with the 
Burgers circuit of Fig. 9, the corresponding circuit 
when made in Fig. 10, contains six coincident-site 
atoms. Since, as will be shown later, coincidence-site 
atoms correspond to lower-energy configurations, the 
stepped grain boundary of Fig. 10 is believed to be of 
lower energy than the corresponding straight boundary. 

Still more subtle and interesting observations can 
be associated with the Burgers circuits of Figs. 7 and 9 
and these are shown in Figs. 11 and 12 respectively. 
In particular, it is clear that the triangles EFG and 
CDG are identical, but differently oriented. In parti- 
cular, FE= Nb= CD, which is simply the component 
of displacement u~ 'c illustrated in Fig. 5 while GE= 
x ~ - x  1 and D E = x ~ - M b .  The latter quantity is the 2 1  2 

component of displacement u~ '~ of Fig. 5. It is impor- 
tant to note that in the continuum approximation, the 
total Burgers-vector components associated with a 
given grain-boundary circuit can be expressed either 
as B I = F E  or BI=CD,  or as B z = F C  or B2=DE. 
However, in the crystal lattice, as presented in Figs. 
7 and 9, it is only the designations of B~ in terms of 
FE and FC that have any physical meaning. The reason 
for this is apparent when it is realized that it is crystal- 
lographically not possible to take the wedge GFE in 
Fig. 11 or Fig. 12 and reinsert it as GDC without 
altering the initial crystallographic description of the 
grain boundary. Thus, in describing the dislocation 
density in terms of an ideal reference lattice (Nabarro, 
1967; Hirth & Lothe, 1968), i.e. either the coincidence- 
site lattice of Fig. 7 or grain g~2 in Fig. 9, it is only 
the continuum-theory approximation which makes it 
possible to carry out such a construction. Crystallo- 
graphically, such a construction is not valid; however, 
it has been used as the basis of Bollmann's (1970) 
O-lattice formulation of the grain boundary. Finally, 
for completeness 

B = ~ . ( G E x n )  / 
B~ = ~Uejk~(GE)knz ~ . (53) 

Descriptions of the Burgers circuit about a general 
grain boundary, but with somewhat different emphasis, 
have previously been carried out by Hirth & Balluffi 
(1973), Hirth & Lothe (1968) and Marcinkowski & 
Sadananda (1973). It is to be emphasized at this point 
that all of the discussion of the present section applies 
equally well to high as well as to low-angle boundaries. 

Interrelationship between grain boundaries with different 
orders of coincidence 

It is next of interest to be able to generate one type of 
grain boundary from another. An approximate rela- 
tionship which enables this to be accomplished has 
already been derived (Marcinkowski & Dwarakadasa, 
1973). It is also possible to derive an exact relationship 
which gives somewhat more insight into the problem. 
To begin with, if a symmetric tilt boundary with tilt 
angle 0 is changed by 0', the final angle can be written 

as 0 + 0' which with the aid of a simple trigonometric 
identity gives 

tan 0/2 + tan 0'/2 (54) 
tan (0/2 + 0'/2) = 1 - tan 0/2 tan 0'/2" 

The tan 0/2 function is readily obtained from equation 
(46). On the other hand, tan 0'/2 can be obtained from 
the following relationship 

tan 0'/2 = N'b~ N '  
M'bs = M ---7 (55) 

where bs is the Burgers vector corresponding to the 
magnitude of the unit cell edge length a0cs in much 
the same way as b was connected to a0. Reference to 
Fig. 8, which was drawn for the 53.1 ° grain boundary, 
shows that a0cs is simply the unit-cell edge length 
associated with the sublattice of the coincidence-site 
lattice corresponding to 0. In general 

a o c  (56) 
aocs = (N 2 -I- M 2) " 

The quantity aocs in turn may also be related to ao by 

ao=aocs(N 2 + M2) 1/2 (57) 

which is similar in form to equation (47). It can thus 
be concluded that all of the tensor quantities associated 
with the distortion that gave rise to 0 can now be ap- 
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plied to the distortion that changes 0 to 0'. However, 
whereas in the former case the crystal-lattice unit cell 
was used to determine the unit of plastic deformation, 
it now becomes the sublattice unit cell of the coinci- 
dence-site lattice corresponding to 0. 

The quantity N'bs in the numerator of equation (55) 
may be written either as 

o r  

N'~b~= N~b~(cos O/2)/M=ba: (58a) 

N~bs=N'zb2(sin O12)/N=b2,~ (58b) 

where Ibd = Ibzl = lad, Ib~ cl = Ibz ,I = la0,d and where 
the common 1 or 2 subscript in either of the above 
relations is used to denote the fact that the Burgers 
vector corresponding to the particular dislocation lies 
along either the x~ or xg direction respectively. The 
quantity M'b~ in the denominator of equation (55) 
measures the spacing between the offsets of mag- 
nitude N'bs in terms of the coincidence-site-lattice 
unit-cell sublattice. Specifically, when equation (58a) 
is valid 

M'~b~= M'~'ao,- N ~bs (59a) 

while in case of equation (58b) 

M ~b~= M'~'ao~- N 2b~ . (59b) 

With these considerations in mind, equation (54) can 
be reduced to 

10+0'\  NM' + N'M 
tan~ ~ ) - -  - M M , _ N N , .  (6O) 

As an example of the use of the above relations, Fig. 
13 shows the creation of a 53-1 ° grain boundary from 
a 36.9 ° boundary. Inspection of the figure shows that 
N =  1, M =  3, N'  = N~ = 1 and M'  = M~ = 7. In addi- 
tion M~'= 1 and N~ = 3, which leads to 

tan (_0_20 ') _½= N ( _ ~ )  ~ -  =tan . (61) 
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Fig. 13. Generation of a 53"1 ° grain boundary from a 36.9 ° 
boundary. 

The extra half planes derived from the 36.9 ° coinci- 
dence-site lattice are outlined by dashed lines in Fig. 
13, and from equation (58) are readily seen to be of 
strength bs=b sin (36.9/2). It is also important to note 
that the quantity M'bs in equation (55) also corres- 
ponds to the unit cell edge length aoc of the new coin- 
cidence-site lattice corresponding to 0'. 

The quantities given in equation (58) also form the 
basis of the following relationship: 

bGB h#i ±h#2 (62) = ~'CL -I ~'CL 

where b ~  ~ and b~  z correspond to the crystal lattice 
dislocations in grains ~1 and ~ 2  which have come 
together at the grain boundary to give the grain 
boundary dislocation bGB of strength twice that given 
by equation (58). More specifically, equation (62) may 
be viewed as the dislocation reaction which occurs 
at every coincident-site lattice point lying within a 
symmetric grain boundary, as can be seen in Figs. 7, 
l0 and 13. Equation (62) also provides justification for 
the conclusion that all symmetric grain boundaries 
can be described in terms of combinations of equal 
numbers of crystal lattice dislocations from the two 
adjacent grains (Marcinkowski, Sadananda & Tseng, 
1973). 

High-angle boundaries in arbitrary crystal structures 

The procedures discussed in the previous sections with 
respect to simple cubic crystals can readily be extended 
to arbitrary crystals. This is most conveniently demon- 
strated by considering grain boundaries in a body- 
centered cubic crystal (Marcinkowski, Tseng & Dwara- 
kadasa, 1974). As an example, Fig. 14 shows a 70.5 ° 
twist boundary in a body-centered cubic crystal which 
terminates on a symmetric tilt boundary. Both the 
edge-type and screw-type grain-boundary dislocations 
are shown in heavy outline and may be visualized as 
being derived from a relationship of the type given by 
equation (62). Note also that the two sets of grain- 
boundary dislocations associated with the twist boun- 
dary in Fig. 14 outline a coincidence-site-lattice unit 
cell which is shown in more detail in Fig. 15. It is thus 
possible to write a somewhat more generalized version 
of the coincidence-site-lattice relationship given by 
equation (46) as follows: 

Nbl (63) 
tan 0 /2 -  Mdz 

where bl is the component of the Burgers vector of the 
crystal lattice dislocation resolved along the x~ axis 
of either grain, while d2 is the interplanar spacing 
between planes on which these dislocations lie. The 
quantity bx in equation (63) may be expressed follows: 

bt - k/3a° Hh + Kk + LI 
2 (H z + K 2-[- L2)t/2(h2 + k 2-b 12)1/2 (64) 

where h, k, l are indices associated with the direction of 
the Burgers vector, while H, K, L are indices associated 

A C 31A. - 2 
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with the xl direction in the grain of interest. The inter- 
planar spacing dz may be written as 

ao (65) dz= (h~ + k 2 + 12) ~/z 

where the indices hp, kp, lt, pertain to the plane upon 
which the dislocation lies. Equations (63), (64) and 
(65) can be combined to give 

tan 20 _ MN 1/32 (hz~ + k~ + l~) wz 

[ Hh+Kk+Li  ] 
x (H z + KZ + LZ)~/Z(h z + kZ +/2)~/2 • (66) 

In Fig. 14 the values of H,K,L are 0,0,T while h,k,l 
are 1,1,T and hp, kp, lp are ], 1,0 so that equation (66) 
becomes 

N 1/2 (67) 
tan 0 / 2 - M  2 " 

For the specific boundary shown in Fig. 14, N =  1 and 
M =  1, while b~=ao/2 and d2= 1/2a0/2, giving a value 
of 0 = 70'5 °. 

Close inspection of Figs. 14 and 15 shows that a 
coincidence-site-lattice unit cell has been chosen which 
is a true unit cell only with respect to the projection 
of atoms along the [110] direction. The true coinci- 
dence-site-lattice unit cell has a value of a0~ twice that 
shown in Fig. 15; however, because of convenience, 
the smaller unit cell will be used. Another important 
point to note in constructing a generalized grain 
boundary is that the crystal lattice dislocations as- 
sociated with the two adjacent grains must be chosen 
such that their resultant Burgers vector lies along the 
common x~ direction. All other components must van- 
ish. Thus, in the case of Fig. 14, the crystal lattice 
dislocations from grain #1  comprising the grain 
boundary possess a Burgers vector given by ½a0[1 IT] 
while those from grain # 2  possess values of ½a0[111]. 
Once again, just as it was possible to relate all tensor 
quantities to the distortions given in terms of the 
coincident-site-lattice unit-cell sublattice, it now also 
becomes possible to relate these same quantities to 
those defined in equation (63) for arbitrary crystals 
and similarly to their respective sublattices. 

The unit-cell edge lengths a0c and b0c in Fig. 15 can 
be expressed in vector notation as follows: 

b0¢--- Nbx + Md2 (68a) 
a0~ = N'b~ - M 'd2 (68b) 

where the primed integers do not have the same 
physical meaning defined earlier. It is also apparent 
that the coincident-site-lattice unit-cell edge lengths 
similar to equation (47) are given by b0~. b0~ and 
a0~. a0~. Furthermore, since b0¢. a0~ = 0, it follows from 
equations (68) that 

( b~ 2_ MM'  (69) 

so that the choice of the four integers is constrained 
by the above relation. In addition, the number of 
atoms within the coincidence-site-lattice unit cell is 
given by 

aocboc 
n= bid2 " (70) 

Thus, the smaller the value of n, the greater the number 
of atoms on coincidence sites, and since these represent 
low-energy configurations, the lower the corresponding 
energy. Equations (68), (69), and (70) can be utilized 
to give 

1/][ MNN'] ~/~ n= [N 'M'M+ (M,)2] (N)2+ M '  J (71) 
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Fig. 14. Termination of a high-angle twist boundary of mis- 

orientation angle 70.5 ° on a symmetric tilt boundary in a 
body-centered cubic lattice. Rotation axis is [110] and is 
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Fig. 15. Coincidence-site-lattice unit cell associated with the 
70.5 ° grain boundary shown in Fig. 14. 
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It is also easy to see that the coincidence-site-lattice 
unit cell sublattice unit vectors are given by 

and 

boos = aoc (72a) 
n 

b0c 
a0cs = - - .  (72b) 

n 

For the specific case shown in Fig. 15, N =  1, M =  1, 
N ' = 2  and M ' = I  so that from equation (71), n=3 ,  
as can be verified by inspection of this figure. It is also 
apparent that equation (71) could have also been used 
in connection with the simple-cubic system discussed 
earlier. 

It is important to note the role played by crystal 
symmetry in the present analysis. For example, in the 
case of the simple-cubic crystal of Fig. 7, a rotation of 
the two adjacent grains by 90 ° instead of 53.1 ° would 
again generate a perfect crystal. On the other hand, 
the various tensor quantities associated with such a 
boundary would still have finite values. This is simply 
a reflection of the fact that the description of grain 
boundaries in terms of a distortion tensor reflects the 
history of the way the boundary was constructed from 
an initially perfect crystal. Thus, it is expected that 
certain distortions may regenerate a new perfect crys- 
tal, but such operations are trivial and under these 
conditions the crystal should obviously be viewed as 
possessing no grain boundaries and thus no grain 
boundary dislocations. 

There are also certain symmetries associated with 
twist boundaries with a [001] rotation axis (Marcin- 
kowski & Dwarakadasa, 1973). In particular, such 
boundaries with rotation angles of 53.1 ° and 36.9 ° are 
identical, or more generally, those twist boundaries 
with n / 2 - 0  and 0 are equivalent, where 0 is any 
coincidence lattice angle. 

Finally, the individual Burgers vectors associated 
with the grain boundaries in the present analysis may 
not be unique, especially in the case of twist boundaries 
where interactions may take place between the two 
sets of screw dislocations. However, each grain boun- 
dary may be viewed as generated by means of a well- 
defined distortion, i.e. unique set of dislocations, so 
that whatever the final arrangement of this set of 
dislocations, the closure failure, which measures the 
net dislocation content of such a boundary, must also 
be unique. 

Summary and conclusions 

The coincident-site-lattice theory of grain boundaries 
has been shown to be compatible with those concepts 
embodied in the continuum theory of dislocations. 
In particular, such quantities as the distortion tensor, 
grain-boundary dislocation-density tensor and in- 
compatibility tensor are all developed in a rather 
straightforward manner around the concept of a coin- 

cident-site lattice. Furthermore, the Burgers circuit 
associated with a grain boundary is shown to be a 
straightforward extension utilizing the above ideas. 
The methods can be applied to grain boundaries within 
any given crystal structure. In addition, the treatment 
is sufficiently general so as to be readily extended to 
two-phase interfaces by including non-zero diagonal 
elements in the distortion tensor. One of the limitations 
of the present analysis is that all of the grain boundaries 
have been described in terms of a rigid medium, with 
no relaxation being allowed at the boundary. Further 
refinements and extensions of the present theory will 
be treated in more detail in subsequent studies. 
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Theory of Simple Two-Phase Interfaces* 
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The coincidence-site-lattice theory of grain boundaries has been applied to simple two-phase boundaries. 
Symmetric and unsymmetric tilt boundaries, pure twist boundaries and unrotated and untwisted bound- 
aries have all been considered. It has been shown that each type of boundary can be described in terms 
of a characteristic coincidence-site lattice. In addition, the dislocation content within the interphase 
boundaries has been defined in terms of Burgers circuits described with respect to the original crystal 
lattices in the new coincidence-site lattices. 

Introduction 

It was first proposed that a coherent boundary be- 
tween two phases of differing lattice constant could be 
described in terms of interface dislocations (Mar- 
cinkowski, 1970a). Those interface dislocations were 
originally referred to as virtual dislocations, since they 
appeared then to be fundamentally different from 
crystal-lattice dislocations. The subsequent develop- 
ment of the coincidence-site-lattice theory of grain 
boundaries however showed this not to be the case 
(Marcinkowski & Sadananda, 1973). 

Although a number of preliminary treatments of 
interface dislocations have been presented (Marcin- 
kowski, 1970a, b; Marcinkowski & Tseng, 1970; 
Marcinkowski, 1972; Sadananda & Marcinkowski, 
1974a; Cullen, Marcinkowski & Das, 1973), none has 
yet been extensive. It is the purpose of the present 
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effort to carry out the first of such studies. The presen- 
tation will be pedagogic in nature, relying heavily on 
simple geometric models. A fuller mathematical 
analysis will follow in a subsequent publication (Mar- 
cinkowski & Kr6ner, 1975). The analysis will be con- 
fined to what is perhaps the simplest of all two-phase 
boundaries in which the two phases A and B possess 
the same simple cubic structures but have differing 
interplanar spacings a0 and b0 such as shown in Fig. 
l(a). The two-phase interface may be visualized as 
comprised of a parallel array of edge-type interface 
dislocations (shown dotted) associated with each 
interatomic spacing in which the Burgers vector of each 
interface dislocation is given by 

[bml=ao-bo . (1) 

For the particular case shown in Fig. l(a), b0=~oa0. 
It is apparent that the array of interface dislocations 

shown in Fig. l(a) generate long-range stresses In 
order that these stresses be reduced, an array of edge- 
type crystal-lattice dislocations of strength [bcL[=b0 
can be introduced into the boundary as shown by the 
solid dislocation symbols in Fig. l(b). It is a simple 
matter to show that the long-range stresses are fully 
compensated when the spacing between the crystal- 


